Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics : SEMICONDUCTING OXIDES

Identifieur interne : 002823 ( Main/Repository ); précédent : 002822; suivant : 002824

Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics : SEMICONDUCTING OXIDES

Auteurs : RBID : Pascal:11-0408466

Descripteurs français

English descriptors

Abstract

The ionization potentials of In2O3 films grown epitaxially by magnetron sputtering on Y-stabilized ZrO2 substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ˜7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ˜7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In2O3 compared to Sn-doped In2O3 (ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0408466

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Orientation dependent ionization potential of In
<sub>2</sub>
O
<sub>3</sub>
: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics : SEMICONDUCTING OXIDES</title>
<author>
<name sortKey="Hohmann, Mareike V" uniqKey="Hohmann M">Mareike V. Hohmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Agoston, Peter" uniqKey="Agoston P">Péter Agoston</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wachau, Andre" uniqKey="Wachau A">André Wachau</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bayer, Thorsten J M" uniqKey="Bayer T">Thorsten J. M. Bayer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brotz, Joachim" uniqKey="Brotz J">Joachim Brotz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Albe, Karsten" uniqKey="Albe K">Karsten Albe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klein, Andreas" uniqKey="Klein A">Andreas Klein</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0408466</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0408466 INIST</idno>
<idno type="RBID">Pascal:11-0408466</idno>
<idno type="wicri:Area/Main/Corpus">002977</idno>
<idno type="wicri:Area/Main/Repository">002823</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Cathode sputtering</term>
<term>Charge carrier injection</term>
<term>Crystal orientation</term>
<term>Density functional method</term>
<term>Epitaxial layers</term>
<term>Indium oxide</term>
<term>Interfaces</term>
<term>Ionization potential</term>
<term>Photoelectron spectra</term>
<term>Property structure relationship</term>
<term>Stabilized zirconia</term>
<term>Surface termination</term>
<term>Thin films</term>
<term>Work functions</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Potentiel ionisation</term>
<term>Pulvérisation cathodique</term>
<term>Spectre photoélectron</term>
<term>Orientation cristalline</term>
<term>Diffraction RX</term>
<term>Travail sortie</term>
<term>Calcul ab initio</term>
<term>Méthode fonctionnelle densité</term>
<term>Terminaison surface</term>
<term>Relation structure propriété</term>
<term>Injection porteur charge</term>
<term>Oxyde d'indium</term>
<term>Interface</term>
<term>Zircone stabilisée</term>
<term>Couche épitaxique</term>
<term>Couche mince</term>
<term>In2O3</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ionization potentials of In
<sub>2</sub>
O
<sub>3</sub>
films grown epitaxially by magnetron sputtering on Y-stabilized ZrO
<sub>2</sub>
substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ˜7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ˜7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In
<sub>2</sub>
O
<sub>3</sub>
compared to Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
(ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>23</s2>
</fA05>
<fA06>
<s2>33</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Orientation dependent ionization potential of In
<sub>2</sub>
O
<sub>3</sub>
: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics : SEMICONDUCTING OXIDES</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HOHMANN (Mareike V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AGOSTON (Péter)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WACHAU (André)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAYER (Thorsten J. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BROTZ (Joachim)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ALBE (Karsten)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KLEIN (Andreas)</s1>
</fA11>
<fA14 i1="01">
<s1>Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 32</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>334203.1-334203.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000191172750040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>62 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0408466</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The ionization potentials of In
<sub>2</sub>
O
<sub>3</sub>
films grown epitaxially by magnetron sputtering on Y-stabilized ZrO
<sub>2</sub>
substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ˜7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ˜7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In
<sub>2</sub>
O
<sub>3</sub>
compared to Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
(ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Potentiel ionisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ionization potential</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectre photoélectron</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoelectron spectra</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Orientation cristalline</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Crystal orientation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>XRD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Terminaison surface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Surface termination</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Relation structure propriété</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Property structure relationship</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Relación estructura propiedad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Interface</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Zircone stabilisée</s0>
<s1>SUB</s1>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Stabilized zirconia</s0>
<s1>SUB</s1>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Zircona estabilizada</s0>
<s1>SUB</s1>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>283</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002823 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002823 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0408466
   |texte=   Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics : SEMICONDUCTING OXIDES
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024